位置:首页历史解密>新冠病毒的弱点是什么

新冠病毒的弱点是什么

所属分类:历史解密 编辑:笑红尘 访问量:3086 更新时间:2024/2/16 3:21:36

新冠病毒基因组核糖体在“移码”过程中的相互作用,发现病毒对核糖体“移码”过程存在“精细控制”,这有望促进通过干扰“移码”过程而抑制病毒复制的药物的开发。

据《科学》杂志13日在线发布的一篇最新论,来自瑞士苏黎世理工大学、伯尔尼大学、洛桑大学和来自爱尔兰的科克大学组成的一支研究团队找到了包括新冠病毒在内的冠状病毒的“致命弱点”。

研究首次成功揭示了病毒基因组和核糖体在“移码”过程中的相互作用,发现病毒对核糖体“移码”过程存在“精细控制”,这有望促进通过干扰“移码”过程而抑制病毒复制的药物的开发。

研究人员设法在新冠病毒RNA基因组“移码”位点捕获了核糖体。然后,通过冻电镜研究发现,病毒RNA会形成一个假结结构,停留在核糖体mRNA通道的入口处,在mRNA中产生力并促进“移码”发生,而新生的病毒多蛋白与核糖体通道形成明显的相互作用。也就是说,假结与核糖体之间的相互作用引起了“移码”的发生。

以前有研究报道,氟喹诺酮类化合物能抑制新冠病毒和其他冠状病毒的“移码”效率。此次研究表明,一种叫做merafloxacin的分子是更好抑制“移码”过程的化合物。它可将新冠病毒的滴度降低3—4个数量级,且对细胞没有毒性。

核糖体移码

蛋白质生物合成时,核糖体在信使核糖核酸(mRNA)的特定序列处,从一个可读框位移至另一个可读框。是某些RNA病毒在翻译水平上调节蛋白质合成的一种机制。

病毒基因组

病毒是最简单的生物,完整的病毒颗粒包括外壳蛋白和内部的基因组DNA或RNA(有些病毒的外壳蛋白外面有一层由宿主细胞构成的被膜(envelope),被膜内含有病毒基因编码的糖蛋白。

病毒不能独立地复制,必需进入宿主细胞中借助细胞内的一些酶类和细胞器才能使病毒得以复制。外壳蛋白(或被膜)的功能是识别和侵袭特定的宿主细胞并保护病毒基因组不受核酸酶的破坏。

移码突变

移码突变是指DNA分子由于某位点碱基的缺失或插入,引起阅读框架变化,造成下游的一系列密码改变,使原来编码某种肽链的基因变成编码另一种完全不同的肽链序列。

例如,一个基因的mRNA 一段为:GAA GAA GAA GAA…,翻译产物是一个谷氨酸多肽。

如果开头插入一个G.那么mRNA阅读框变成GGA AGA AGA AGA…,翻译产物是一个以甘氨酸开头的精氨酸多肽。移码突变必将引起蛋白质性质的改变从而引起性状的变异,严重时会造成个体死亡。移码突变所造成的DNA损伤一般远远大于点突变。

基因移码突变

基因移码突变是指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。

标签: 历史事件

更多文章

  • 为什么火星车叫祝融

    历史解密编辑:轻描淡写标签:历史事件

    祝融,在传统文化中被尊为最早的火神,象征用火照耀大地,带来光明。祝融号,为天问一号任务火星车。高度有1米85,重量达到240公斤左右。设计寿命为3个火星月,相当于约92个地球日。祝融这个名字,在上古神话中代表着火神、巫师的意思,有光明的意思。(《国语·郑语》:祝被亦能昭显天地之光明。)按照古书的记载

  • 祝融号的恐怖9分钟是什么

    历史解密编辑:高傲的气质花标签:历史事件

    距离地球约2亿公里的火星,又有了新的天外来客。15日上午8点左右,我国首辆火星车“祝融号”成功着陆火星北半球的乌托邦平原(Utopia Planitia)。搭载火星车的着陆器与“天问一号”探测器分离后,跟地球完全“失联”,需要自主完成近9分钟的软着陆过程,要将大气进入速度4.9km/s降低到垂直速度

  • 祝融号和美国毅力号有什么区别

    历史解密编辑:莫笑少年梦标签:历史事件

    跟美国的重达1000多公斤的“毅力号”相比,“祝融号”只是一个小不点。但“麻雀虽小,五脏俱全”,它也携带了13种有效载荷,来完成对火星形态、地质学、矿物学、空间环境、土壤和水冰分布等的分析。比如:·探地雷达,可以对火星表面100米以下成像;·火星表面磁场探测器,可探测表面磁场强度;·火星气象测量仪,

  • 如何确保天问一号不迷路

    历史解密编辑:等你回来标签:历史事件

    确保天问一号不迷路,要归功于两台全新研制的设备,这是两台用于深空探测光学自主导航的全新设备,它们在不同阶段帮助天问一号确定位置与速度。分别是:一、光学导航敏感器,用于巡航段,远距离对火星成像;二、红外导航敏感器,用于环绕段,即“天问一号”成为火星卫星时,测量轨道位置和速度,避免迷路。光学导航敏感器光

  • 18亿像素拍的火星表面是什么样子

    历史解密编辑:君莫笑标签:历史事件

    去年,美国国家航空航天局(NASA)公布了“好奇号”拍摄的火星全景照片,像素高达18亿,照片大小达到了2.25GB,是迄今为止最清晰的火星图片。有兴趣可以去NASA官网下载原图在这张全景照片内,地表的陨石坑、“好奇号”的车轮轨迹、泥土都清晰可见,画面曝光后,网友纷纷留言「很难想象这是一颗5500万公

  • 光学导航敏感器是什么

    历史解密编辑:轻描淡写标签:历史事件

    光学导航敏感器是指应用于空间环境中基于光学探测原理获取航天器姿态或导航信息的敏感器。光学导航敏感器可以说是航天器的“眼睛”。光学导航敏感器简介一般来说,航天器在离开地球以后,北斗等全球导航系统便逐渐派不上用场。而在没有北斗,没有GPS的情况下,茫茫太空中,类似“天问一号”的探索太空的飞行器靠的就是光

  • 香兰素是什么

    历史解密编辑:高傲的气质花标签:历史事件

    香兰素,又名香草醛、香草粉、 香草精,化学名称为3-甲氧基-4-羟基苯甲醛,是从芸香科植物香荚兰豆中提取的一种有机化合物,为白色至微黄色结晶或结晶状粉末,微甜,溶于热水、甘油和酒精,在冷水及植物油中不易溶解。香气稳定,在较高温度下不易挥发。在空气中易氧化,遇碱性物质易变色。香兰素具有香荚兰豆香气及浓

  • 香兰素有什么作用

    历史解密编辑:元气少女标签:历史事件

    香兰素化学名为4-羟基-3-甲氧基苯甲醛,又名甲基原儿茶醛、香草醛,为一种重要的广谱型高档香料,是截止2019年全球产量最大的香料之一,具有清甜的豆香、粉香气息,可用作定香剂、协调剂及调味剂,广泛应用于食品、饮料、化妆品、日用化学品及医药等行业。在下游行业中的使用比例分别为食品添加剂约50%、医药中

  • 目前火星表面有哪些探测器

    历史解密编辑:一个人精彩标签:历史事件

    火星表面有哪些最著名的探测器?当前,最著名的火星探测器要数好奇号和毅力号火星车了,前者自从2012年着陆火星以来,一直稳定工作,靠放射性同位素发电机提供能量。后者于2021年2月19日成功登陆火星,还带去了一架名叫“机智”号的直升机,目前工作状态良好。图注:火星表面的探测器分布。2004年着陆火星的

  • 祝融号降落在火星的哪个地方

    历史解密编辑:卖萌天才标签:历史事件

    北京时间2021年5月15日上午8点20分左右,我国天问一号着陆器确认成功降落火星,着陆地点位于火星北半球的乌托邦平原,着陆器上搭载的是我国“祝融”号首辆火星车,这是我国首次实施火星着陆任务。图注:2021年3月16日,天问一号轨道器拍摄的火星南半球影像。天问一号火星探测器2020年7月23日发射升